江苏机械门户网
 
用户名: 密码: 注册账号
 
文章查询:
 现在的位置:首页 >> 技术
  最新图文
  资    讯 更多..
4 宿迁首个院士创业项目揭牌 
4 设立“江苏工匠日” 
4 聚集号已吹响!3月18-20日… 
4 擘画“双碳”未来 2022邯… 
4 颜晓红: 打造江苏先进制…
4 坚持创新第一动力,加快科…
4 全球新能源汽车技术市场…
4 抓机遇 建体系 强标准—…
4 全力打造高水平创新集群
4 把“智改数转”植入企业…
  法律法规 更多..
4 工业和信息化部办公厅关…
4 四部门调整新能源汽车推…
4 省政府办公厅关于印发江…
4 《“十四五”国家信息化…
4 《“十四五”冷链物流发…
4 2021年中国及各省市新能…
4 关于制造业单项冠军第六…
4 关于印发江苏省“十四五…
4 关于开展江苏省2021年度…
4 五部门关于举办2021年全…
基于ZigBee网络和视频监控的电力设备故障监测与诊断

内容来源:《机械设计与制造工程》      浏览次数:309      更新时间:2021-04-01

基于ZigBee网络和视频监控的电力设备故障监测与诊断

 晟,陈新星,陈人楷

(国网福建省电力有限公司信息通信分公司,福建 福州 350000)

作者简介:王晟(1990—),男,工程师,硕士,主要研究方向为通信技术应用等, wangh078@sina.com.

 

摘要:基于ZigBee网络铺设成本低和传输效率高的优点,提出一种基于ZigBee网络和视频监控的电力设备故障监测与诊断方法。首先通过视频监控设备和传感器采集电力设备故障信号数据,识别过程中采用小波包3层分解和重构电力设备故障信号数据提取小波包能量特征;然后将其特征数据划分成训练样本和测试样本,在极限学习机的基础上引入正则化因子,提出了正则化极限学习机算法,用于进行故障分类、诊断和识别;最后将训练样本作为RELM模型的输入和输出,建立电力设备故障RELM识别模型进行故障识别。与ELMSVMBPNN相比,运用RELM进行电力设备故障诊断具有更高的诊断准确率和更低的误判率。

 

关键词ZigBee网络;电力设备故障;故障诊断;正则化极限学习机;视频监控

中图分类号X773   文献标识码A   文章编号2095-509X(2020)12-0046-04

 

随着电网建设规模不断扩大和电力设备覆盖率的提高,需要调控中心监控的电力设备数量激增,难以及时高效、准确地发现电力设备存在的安全隐患和故障1-2,因此开展电力设备故障高精度远程监测与故障诊断,有针对性地根据实际需求进行可靠的运营和维护,对提高电力部门的管理能力和保障用户的用电安全具有重要的理论价值和实际意义。

 

与传统通信网络相比,ZigBee网络具有铺设成本低和传输效率高的优点。本文运用ZigBee无线网络传输电力设备视频监控信号和故障信号,给出了电力设备故障监测与诊断框架,运用正则化极限学习机(regularized extreme learning machine RELM)进行电力设备故障诊断,与极限学习机(extreme learning machineELM)、支持向量机(support vector machineSVM)和前馈神经网络(backpropagation networkBPNN)相比,具有更高的诊断准确率和更低的误判率,提高了电力设备故障诊断的精度,为电力设备故障诊断研究和应用提供了新的方法。

 

1 电力设备故障监测系统结构 

为实现电力设备故障监测与诊断,基于ZigBee网络成本低和传输效率高的优点3建立电力设备故障检测系统,运用ZigBee无线网络传输电力设备视频监控信号和故障信号。系统结构和ZigBee无线网络结构如图1所示。

 

分享到:

 
版权所有:南京蓝页动力文化传播有限公司  苏ICP备14020118号-1

该网站由小贝网络工作室提供技术支持

 
360网站安全检测平台 气动倒料机-策途精密机械