江苏机械门户网
 
用户名: 密码: 注册账号
 
文章查询:
 现在的位置:首页 >> 技术
  最新图文
  资    讯 更多..
4 江苏省创新产业协同发展… 
4 跌宕起伏十余载 中国机床… 
4 国务院新闻办“中国经济…
4 今年出去玩儿,有这些好消…
4 全国科技工作会议第二次…
4 2025第十一届世界雷达博…
4 第七届民用航空发动机与…
4 专家详解中国空间站未来…
4 集成电路超过手机,成为中…
4 2025年中国风电年新增装…
  法律法规 更多..
4 李强主持召开国务院常务…
4 办法公布!2025年起弹性退…
4 李强主持召开国务院常务…
4 中国出台能源法 专家称多…
4 江苏省工程机械产业高质…
4 省工业和信息化厅等七部…
4 省工业和信息化厅关于印…
4 三部门关于印发《制造业…
4 国务院常务会通过《制造…
4 关于印发江苏省机器人产…
《基于小波降噪-支持矢量机的锂离子电池剩余使用寿命预测模型》

内容来源:机械设计与制造工程      浏览次数:1201      更新时间:2020-04-10

基于小波降噪-支持矢量机的锂离子电池剩余使用寿命预测模型

曲杰,赵小涵,甘伟

(华南理工大学机械与汽车工程学院,广东 广州510641)

基金项目:国家重点研发计划项目(2018YFB0104100

作者简介:曲杰(1971—),男,副教授,博士,主要研究方向为数据挖掘、汽车安全、先进制造技术,qujie@scut.edu.cn.

 

摘要:针对锂电池充放电数据中夹杂噪声从而影响剩余使用寿命预测的问题,首先基于多分辨率的小波降噪方法,提出了锂电池充放电曲线降噪方法。然后采用支持矢量机回归方法建立了基于降噪数据的支持矢量机预测模型。最后用实验的方法采集锂电池容量保持率-充放电次数数据,对数据进行降噪并应用支持矢量机回归方法对其进行了寿命预测。结果显示基于降噪数据建立的支持矢量机回归模型预测性能优于基于原始数据建立的支持矢量机回归模型的预测性能,该方法预测结果与实际实验数据相对偏差在2.1%以内。

关键词:剩余使用寿命预测;小波降噪;支持矢量机;锂电池

中图分类号:TP399   文献标识码:A   文章编号:2095-509X(2020)01-0081-04

 

锂离子电池具有高的能量密度、长的循环寿命、低的自放电率和高的环境友好性,因此在电动汽车上获得了广泛应用[1]。电池管理系统可以对动力电池进行在线监测与控制,确保汽车在各种驾驶情况以及较长的行驶里程中能够可靠、安全地运行。电池管理系统主要是对电池荷电状态、健康状态和功能状态进行评估,其中电池剩余使用寿命(RUL)预测是对电池健康状况评估的一项重要内容[2]。Zheng等[3]提出了一种基于非线性时间序列预测模型的无迹卡尔曼滤波(UKF)算法来进行RUL预测,该模型在100个循环内的平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为0.161 1和0.011 56Wang等[4]提出了基于迭代多步预测模型的支持矢量机(SVM)方法对锂电池进行RUL预测,该模型的特点是在预测数据较少时就可以实现高精度预测。其中的RUL预测过程依赖于电池的充放电数据,充放电数据通常由寿命测试获得,然而寿命测试通常需要进行大量的连续充放电,使得所测得的充放电数据往往夹杂噪声,使得用该实验数据建立的剩余使用寿命预测模型的精度会受到影响。邢飞等[5]提出应用小波分析方法对原始光谱数据进行降噪预处理,然后馈送到支持向量机完成对光谱数据的最终识别从而提高数据识别精度。受邢飞等人的启发,笔者提出一种基于交叉检验的多分辨率小波降噪方法[6],即在建立支持矢量机寿命预测模型前先对实验数据进行降噪处理,采用交叉检验方法提高降噪精度。







网站微信公众号    欢迎大家关注

分享到:

 
版权所有:江苏机械门户网  苏ICP备14020118号-1

该网站由小贝网络工作室提供技术支持

 
360网站安全检测平台